Enhanced Antimicrobial Effect of Yeast Mediated Silver Nanoparticles Synthesized From Baker’s Yeast
Authors
Abstract:
In recent science Nanotechnology is a burning field for the researchers. To meet the requirements and growing technological demand, there is a need to develop an eco-friendly approach. In the present effort, the baker’s yeast (Saccharomyces cerevisiae) has been taken in order to assess its potential as putative candidate fungal genera for the transformation of silver nanoparticles. Silver nanoparticles were successfully synthesized from Saccharomyces cerevisiae by green synthesis method. The formation of silver nanoparticles and the concentration of yeast extract required to produce yeast mediated silver nanoparticles with no aggregation was found out by UV-Visible spectroscopic analysis. The detailed characterization of the Ag NPs was carried out using Scanning Electron Microscopy (SEM), and FTIR. From the UV-visible spectroscopy, the maximum absorption peak was found at 440 nm. From the SEM images, it is confirmed that the sample contains spherical silver nanoparticles at a range of 10 to 60 nm. The silver nanoparticles are crystalline in nature, which was confirmed by the FT-IR peak at 518 cm-1 corresponding to the Ag vibration present in crystalline structure. The water filtration system depicted 5 log reduction for AgNPs [99.99% reduction]. The antibacterial activity of silver nanoparticles was determined by well diffusion method, and found that silver nanoparticles have significant antibacterial activity against E. coli with an inhibition zone of 2.1cm. The MIC test was performed to test the inhibitory concentration of AgNPs against the pathogens and was found to be 40 µg ml-1 for E.coli and comparatively higher for other microorganisms.
similar resources
Yeast Mediated Synthesis of Silver Nanoparticles
A green low-cost and reproducible yeast mediated synthesis of silver nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ag nanoparticles. Nanoparticles almost spherical in shape having a size of 6-20 nm are found.
full textyeast mediated synthesis of silver nanoparticles
a green low-cost and reproducible yeast mediated synthesis of silver nanoparticles is reported. the synthesis is performed at room temperature. x-ray and transmission electron microscopy analyses are performed to ascertain the formation of ag nanoparticles. nanoparticles almost spherical in shape having a size of 6-20 nm are found.
full textDNA polymerases from bakers' yeast.
Two DNA polymerases are present in extracts of commercial bakers' yeast and wild type Saccharomyces cerevisiae grown aerobically to late log phase. Yeast DNA polymerase I and yeast DNA polymerase II can be separated by DEAE-cellulose, hydroxylapatite, and denatured DNA-cellulose chromatography from the postmitochondrial supernatants of yeast lysates. The yeast polymerases are both of high molec...
full textFormaldehyde dehydrogenase from bakers' yeast.
In the course of studies of formaldehyde metabolism in yeast (I), an enzyme was found that catalyzed the oxidation of formaldehyde in the presence of glutathione and diphosphopyridine nucleotide. A similar enzyme was discovered independently by Strittmatter and Ball in liver (2). This paper describes the partial purification and some of the properties of yeast formaldehyde dehydrogenase. Some e...
full textAntimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract
Background: It has been known for quite some time now that silver nanoparticles (AgNP) can inhibit microbial growth and even kill microbes. Our investigation reports the antimicrobial activity of AgNP against a model bacterium, Escherichia coli. Methods: The aqueous extract of Lycopersicon esculentum (red tomato) was used for the rapid synthesis of AgNP, which is very simple and eco-friendly in...
full textTHE CALCIUM BINDING SITES OF THE BAKERS' YEAST TRANSKETOLASE
The calcium binding sites of Bakers' Yeast Transketolase (TK) was elucidated by estimating the pKa values of the functional groups that bind to calcium. These pKa's were found to be 6.25 and 7.2 relating to the pKa's of the two immidazol moieties of histidine residues on the enzyme. The rate of the binding of calcium to the enzyme was obtained separately as a function of pH. Maximum values ...
full textMy Resources
Journal title
volume 14 issue 1
pages 33- 42
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023